赵老师教案网 >地图 >教学设计 >

高中数学教案

高中数学集合的教案设计与反思

时间:2024-10-28 赵老师教案网

高中数学集合的教案设计与反思(摘录8篇)。

作为一位优秀的老师,教学是我们的任务之一,写教学反思可以很好的把我们的教学记录下来,那么写教学反思需要注意哪些问题呢?下面是小编帮大家整理的集合的教学反思,欢迎阅读,希望大家能够喜欢。

高中数学集合的教案设计与反思 篇1

对于许多学生来说,学习数学的目标仅仅是应对考试,其实不然,学习数学的一个更重要的目的是要学会数学的思考,用数学的眼光去看世界,去了解世界。而对于我们数学教师而言,我们还要从教的角度去看待数学,去发现数学,不仅要自己能做、能理解,更重要的是要能够教会学生去做、去理解,因此教师对教学概念的反思应当从逻辑的、历史的、辨证的等方面去发展。比如:

从逻辑的角度看

函数概念主要包含定义域、值域、对应关系三个要素,以及函数的单调性、奇偶性、周期性、对称性等性质和一些具体的特殊函数,如指数函数、对数函数、幂函数等这些内容是函数教学的基础,但不是函数的全部。

从关系的角度来看

不仅函数的主要内容之间存在着种种实质性的联系,比如定义域和对应关系确定了值域,函数与其他数学内容之间也存在着密切的联系。

方程的根可以作为这个方程对应函数的图象与坐标轴交点的横坐标;不等式的解就是这个不等式对应函数的图象在轴上方或者下方的那一部分所对应的横坐标的集合;数列也就是定义在自然数集合上的函数;同样的几何部分也与函数有着密切的联系。

在新课程背景下的数学课堂教学中,要提高教学质量,提高学生的学习效率,我们应该多思考,多准备,充分做到备教材、备学生、备教法,提高自身的`教学机智,发挥自身的主导作用。不仅要求学生学会,而且要让学生会学,特别是自学,尤其是在课堂上,不仅要发展学生的智力因素,而且要在有限的时间内,出色的完成教学任务,不能穿新鞋走老路。

教师在教学生时不能把他们看作是空的容器,按照自己的意愿往这些空的容器里灌输数学知识就完了,这样往往会进入误区,因为师生之间在数学知识、数学活动经验、兴趣爱好、社会生活阅历等方面都存在着非常大的差异,这些差异会使得他们对同一个教学活动的感觉常常是不一样的。在教学中,为了更好的教会学生学习,一个比较有效的方式就是在教学的过程中尽量把学生头脑中问题挤出来,让他们把解决问题的思维过程显露出来。

在数学教学方法上,要有明确的教学目标,要能突出重点、化解难点,要善于应用现代化教学手段,要根据具体的教学内容选择恰当的教学方法,对学生及时鼓励、关爱学生,充分调动学生的积极性,发挥学生学习的主体作用,重视基础知识、基本技能和基本方法,渗透教学思想方法,培养学生的综合运用能力。

高中数学集合的教案设计与反思 篇2

教学目标:

1.让学生经历韦恩图的产生过程,能借助直观图,利用集合的思想方法解决简单的实际问题。

2.培养学生善于观察、善于思考的学习习惯。使学生感受到数学在现实生活中的广泛应用,尝试用数学的方法解决实际生活中的问题,体验解决问题策略的多样性。

教学重点:

让学生感知集合的思想,并利用集合的思想方法解决简单的实际问题。

教学难点:

学生对重叠部分的理解。

教学准备:

多媒体课件、姓名卡片等。

教学过程:

(一)创设情境,引出新知

1.出示信息。

出示教科书例1,只出示统计表,不出示问题。让学生说一说从中获得了哪些信息。

2.提出问题,激发“冲突”

让学生自由提出想要解决的问题,重点关注“参加这两项比赛的共有多少人”这个问题,让学生解答。关注不同的答案,抓住“冲突”,激发学生探究的欲望。

(二)自主探究,学习新知

1.独立思考表达方式,经历知识形成过程。

师:大家对这个问题产生了不同的意见。你能不能借助图、表或其他方式,让其他人清楚地看出结果呢?

学生独立思考,并尝试解决。

2.汇报交流,初步感知集合概念。

(1)小组交流,互相介绍自己的作品。

(2)选择有代表性的方案全班交流。

请每幅作品的创作者上台介绍自己的思考过程,注意追问“如何表示出两项比赛都参加的学生”,体会两个集合中的公共元素构成的交集。

预设1:把参加两项比赛的学生姓名分别列出,把相同的名字连起,就找到两项比赛都参加的学生了,有3人。这样参加跳绳比赛的9人,加上参加踢毽比赛的8人,再去掉3个重复的,应该是14人。

预设2:先写出所有参加跳绳比赛同学的姓名,再写参加踢毽比赛的。如果与前面的相同就不重复写了,连线就能表示了。一共写出了14个不同的姓名,说明参加比赛的有14人。从姓名上如果引出两条线,就说明他两项比赛都参加了。

预设3:把参加两项比赛学生的`姓名分别放到两个长方形里,再把两项比赛都参加的学生的名字移到一边,两个长方形里都有这三个名字,把这两个长方形的这部分重叠起来,名字只出一次就可以了。可以看出只参加跳绳比赛的有6人,两项比赛都参加的有3人,只参加踢毽比赛的有5人,一共有14人。

3.对比分析,介绍韦恩图。

(1)对比、分析,提示课题。

师:同学们解决问题的能力真强,而且画出了这么多不同的图示表示。上面的三幅图中,你更喜欢哪一幅?为什么?

预设1:喜欢第三幅,去掉了重复的学生的姓名,更清楚,很容易看出参加这两项比赛的学生情况。

预设2:喜欢第三幅,用两个长方形的重叠部分表示两项比赛都参加的学生,很直观。

师:在数学上,我们把参加跳绳比赛的学生看作一个整体,叫做一个集合;把参加踢毽比赛的学生看作一个整体,也是一个集合。今天我们就研究集合。(板书课题:集合。)

(2)介绍用韦恩图表示集合。

师:第三幅图先把参加跳绳的和踢毽的学生的姓名分别放在了长方形里,很直观。回忆一下,在认识百以内数的时候,按要求写数时,就把提供的数和按要求写出的数都用类似长方形的圈圈了起,每个圈都分别表示一个集合。

师:在数学上我们常用这样的方法,直观地把集合中的具体事物表示出来。(多媒体课件出示左下图,或在黑板上将姓名卡片圈起。)

师:这个图表示什么?

预设:参加跳绳比赛的学生的集合。

出示右上图,随学生回答将参加踢毽比赛的学生姓名填入圈中。

在填入姓名时,引导学生发现,每个圈中的姓名不能重复、不能遗漏,体会集合元素的互异性;每个圈中姓名的摆放次序可以多样,体会集合元素的无序性。

(3)介绍用韦恩图表示集合的运算。

提问:利用这两个图怎样才能让他人直观地看出“参加这两项比赛的人员情况”呢?

通过多媒体课件,动态展示将左右两个图部分重叠的过程,或操作姓名卡片,去掉重复的姓名卡片,帮助学生理解姓名出现两次的学生是这两个集合的公共元素,可以用两个图的重叠部分表示它们的交集。

提问:中间重叠的部分表示的是什么?

预设:两项比赛都参加的学生;既参加跳绳比赛又参加踢毽比赛的学生。

提问:整个图表示的是什么?

预设:参加这两项比赛的学生;参加跳绳比赛或参加踢毽比赛的学生。

4.列式解答,加深对集合运算的认识。

(1)尝试独立解决。

(2)汇报交流,体会解决问题的多种方法。

预设:9+8-3=14,9+(8-3)=14,8+(9-3)=14,6+3+5=14等。

让学生通过图示与算式结合进行表达,感悟多种集合知识。可以让学生在韦恩图上指一指它们求出的是哪一部分,体会并集;指一指算式中每一步表达的是哪一部分,如“8-3”和“9-3”,体会差集。

(3)比较辨析,体会基本方法。

通过对各种计算方法的比较,发现虽然具体列式方法不同,但都解决了问题,即求出了两个集合的并集的元素个数。重点让学生说一说9+8-3=14这一算式表达的含义,“参加跳绳比赛的人数加上参加踢毽比赛的人数再减去两项比赛都参加的人数”,体会“求两个集合的并集的元素个数,就是用两个集合的元素个数的和减去它们的交集的元素个数”这一基本方法。

(三)联系生活,巩固练习

1.完成“做一做”第1题。

先独立完成,再汇报交流。

可先分别出示两个集合圈,让学生填入相应的序号,再利用多媒体课件动态展示将两个集合并的过程。

2.完成“做一做”第2题。

学生先独立完成,再汇报交流。

提问1:你是用什么方法解答第(1)题的?要注意什么?

预设:圈出重复的姓名,再数出。要认真仔细找,不要漏掉。

提问2:第(2)题是求什么?你是用什么方法解答的?

预设:第(2)题求的是获得“语文之星”或“数学之星”的一共有多少人,只要获得了任何一个奖都要计算进去。先数出获得“语文之星”的集合的人数,再数出获得“数学之星”的集合的人数,相加后,再去掉既获得“语文之星”又获得“数学之星”的人数。如果学生理解题意有困难,可以借助韦恩图帮助学生理解。

(四)全课小结

师:今天我们学习了集合的知识,还会运用集合知识解决生活中的问题。说一说今天你有什么收获。

高中数学集合的教案设计与反思 篇3

新课程倡导的是教师是学生学习的引导者、组织者、合作者、促进者,是平等的,而不再是“传道”“解惑”的权威,更不是学生学习知识的“批发商”。将学习的主动权交还给学生,是这节课给我的最大的启示。

首先,我让他们先感受多米诺骨现象,通过播放一段影片并且联系生活中的事物和现象,比较这些现象之间的相似之处,感受多米诺骨牌的原理,并在引导他们类比到数学的证明题中,引出数学归纳法,分析三个步骤间的逻辑推理关系。

接着,选取三道由易到难的练习,以填空到不做任何提示的方式过渡,让学生经历“尝试——熟练运用”的过程,强化使用数学归纳法的步骤和注意事项。设置课堂教学如果以灌输为主的,总以为只要抓紧时间将基础知识讲完,然后进行大量的练习和讲评、多讲些例题,就能提高学生的数学成绩。这样的课看起来效率很高,其实不然。因为有些题目讲过几遍,学生依然会做错,原因就在于灌输的课堂往往不能从学生的实际出发,纠正学生本来的错误,而是把教师的想法和解法填鸭给学生,几乎没有师生之间的交流与互动,这与新课程改革的方向相背离。于是我大胆采取以练为主,例题练习合二为一的方式,学生刚明白数学归纳法的原理,就动手运用,避免不了的.要犯错误,我再抓住时机纠正这些错误,一边强化使用归纳法的步骤,一边规范解题的过程,

这样的教学方式学生自然是更感兴趣的,提前发现错误肯定比等到做作业和练习甚至考试时再发现更好,所以这样的课堂教学也是更高效的。

最后我以微软的一道面试题结束整节课,目的是想学生们知道自己今天所学的虽然是数学上的一种证明方法,但其实也是一种思维方法,甚至在关系自己前程的一场面试中,只要会运用它,就能取得成功。

高中数学集合的教案设计与反思 篇4

课标中要求学生通过实践活动感受数学在日常生活中的作用,体验运用所学的知识和方法解决简单问题的过程,获得初步的数学活动经验。

因此我把本节课的教学目标定为以下三点:

1、学生经历维恩图的产生过程,了解简单的集合知识,初步感受它的意义。

2、学生学会借助直观图,利用集合的思想方法解决简单的实际问题。

3、培养善于观察、思考的学习习惯,提高学习数学的兴趣。

为了达到教学目标,我事先准备好比赛邀请卡、学生姓名卡片和绳子围成的圈(黄色的圈和绿色的圈),创设了圣诞老人派发跳绳和踢毽比赛邀请卡的情境,带领学生在站一站、贴一贴、画一画、算一算的过程感悟维恩图的产生和维恩图各部分表示什么,教学反思《数学广角——集合教学反思》。

第一次上数学广角的知识,整节课在活动体验中感悟维恩图的产生,学生兴趣浓厚。

在玩中学,既解决了数学问题,又知道了数学知识源于生活;既学会了数学方法,又能用数学方法去解决简单的实际问题。

反思整节课,我觉得自己需要关注以下几点:

1、对教材的解读不够深刻,维恩图各部分表示什么是本节课的重点,虽然在课中我也反复带领学生去说,最后学生也能自己知道维恩图各部分的含义,但总觉得少了点什么。

课后经过师傅的指点,我知道了在拿到邀请卡的学生上台站在相对应的圈里时,我就可以用邀请卡在黑板上贴一贴,学生就可以先初步感知到——拿到跳绳邀请卡的学生看作一个整体,就是是一个集合,然后在画出图后,再进行移动把比赛邀请卡换成姓名卡片,再次感知集合(维恩图)。

2、在时间分配上欠合理,在用绳子围成的圈里感知集合时,学生已经知道了这是一个整体,也知道了两个圈有重复的部分,其实在这个时候我就可以直接用邀请卡、姓名卡片在黑板上贴一贴、移一移,师生互动一起整理姓名卡片用维恩图来表示。

这样学生自己在下面画的时间就可以节约下来,足以完成后面的巩固部分。

3、在经历维恩图产生的过程中,用绳子围成的圈感知韦恩图的产生即是优点也是缺点,优点就是比较直观学生知道把同类的放在一个集合里,属于两个共同区域的放在中间;缺点就是目的性太强,扼杀了学生其他的表示方法,到学生自己画的时候就只有一种

只是用点子、文字、数字等来表示名单。

一次上课就是一种经历,通过今天学校独特的众筹研讨,以研促评的教学研讨,带给我们雏雁的不仅仅这节课的收获,更多的是一种学术思想。

在以后的教学中我会多想,多学,多思,多实践,在实践中进步。

高中数学集合的教案设计与反思 篇5

数列是高中数学的重要内容。它不仅有着广泛的实际应用,而且起着承前启后的作用。数列作为一种特殊的函数与函数思想密不可分,是函数思想的延续。数列在中学教材中既具有独立性、又具有较强的综合性。它可以与函数、方程、不等式、解析几何等知识相结合,是训练推理能力以及逻辑思维能力的好素材……数学知识的特点之一就是具有抽象性,教学中我应该注重将抽象具体化。考查内容主要有两个方面:

一是数列的基本概念。

二是数列的运算。复习时应注意以下几个方面。

一、重视函数与数列的联系,重视函数思想的应用

加强对数列通项公式和前N项和公式的研究和实质的掌握。数列的通项公式和前N项和公式都可以看作项数N的函数。因此要重视函数思想在数列中的应用。

二、熟练掌握、灵活应用等差数列、等比数列的性质以及由此得到的结论

要把握基础,对数列内容的基础知识、基本方法要牢固把握,融会贯通,对数列的概念、分类、前N项和通项的关系及求解方法要烂熟于心,对等差与等比数列的定义、通项公式、前N项和公式、中项、性质等知识及其综合应用要胸有成竹,对等差、等比数列与其他知识的交汇问题要了如指掌,这样才能在解题中发挥出真正的水平。

三、注重方法技巧、适当引申拓宽

应该掌握解决各种基本题型的基本方法,提高解决基本问题的'能力,使得基本问题求解做的万无一失。

四、加强交汇,提高素质

数列的渗透能力很强,它和函数、方程、三角函数、不等式等知识相互联系,优化组合,无形中加大了综合的力度,解决此类题目,必须对隐藏在数列概念和方法中的数学思想有所了解,深刻领悟它在解题中的重大作用。常用的数学思想有;函数与方程、数形结合、分类讨论、等价转化等。在学习中进行有效的训练,以期不断地进行积累及尝试突破。做题时,要设计一些新颖的题目,尤其是通过探索性题目,挖掘学生的潜力,培养学生的创新意识和创新精神。数列综合能力题涉及的问题背景新颖,解法灵活,解这类题目时,要教给学生科学合理地思维,全面灵活地运用数学思想方法。

高中数学集合的教案设计与反思 篇6

教学目的:

(1)理解两个集合的并集与交集的的含义,会求两个简单集合的并集与交集;

(2)理解在给定集合中一个子集的补集的含义,会求给定子集的补集;

(3)能用Venn图表达集合的关系及运算,体会直观图示对理解抽象概念的作用。

教学重点:

集合的交集与并集、补集的概念;

教学难点:

集合的交集与并集、补集“是什么”,“为什么”,“怎样做”;

【知识点】

1、并集

一般地,由所有属于集合A或属于集合B的元素所组成的集合,称为集合A与B的并集(Union)

记作:A∪B读作:“A并B”

即:A∪B={x|x∈A,或x∈B}

Venn图表示:

第4 / 7页

A与B的所有元素来表示。 A与B的交集。

2、交集

一般地,由属于集合A且属于集合B的元素所组成的集合,叫做集合A与B的交集(intersection)。

记作:A∩B读作:“A交B”

即:A∩B={x|∈A,且x∈B}

交集的Venn图表示

说明:两个集合求交集,结果还是一个集合,是由集合A与B的'公共元素组成的集合。

拓展:求下列各图中集合A与B的并集与交集A

说明:当两个集合没有公共元素时,两个集合的交集是空集,不能说两个集合没有交集

3、补集

全集:一般地,如果一个集合含有我们所研究问题中所涉及的所有元素,那么就称这个集合为全集(Universe),通常记作U。

补集:对于全集U的一个子集A,由全集U中所有不属于集合A的所有元素组成的集合称为集合A相对于全集U的补集(complementary set),简称为集合A的补集,

记作:CUA

即:CUA={x|x∈U且x∈A}

补集的Venn图表示

说明:补集的概念必须要有全集的限制

4、求集合的并、交、补是集合间的基本运算,运算结果仍然还是集合,区分交集与并集的关键是“且”与“或”,在处理有关交集与并集的问题时,常常从这两个字眼出发去揭示、挖掘题设条件,结合Venn图或数轴进而用集合语言表达,增强数形结合的思想方法。

5、集合基本运算的一些结论:

A∩B?A,A∩B?B,A∩A=A,A∩?=?,A∩B=B∩A

A?A∪B,B?A∪B,A∪A=A,A∪?=A,A∪B=B∪A

(CUA)∪A=U,(CUA)∩A=?

若A∩B=A,则A?B,反之也成立

若A∪B=B,则A?B,反之也成立

若x∈(A∩B),则x∈A且x∈B

若x∈(A∪B),则x∈A,或x∈B

¤例题精讲:

【例1】设集合U?R,A?{x|?1?x?5},B?{x|3?x?9},求A?B,?U(A?B)。解:在数轴上表示出集合A、B。

【例2】设A?{x?Z||x|?6},B??1,2,3?,C??3,4,5,6?,求:

(1)A?(B?C);(2)A??A(B?C)。

【例3】已知集合A?{x|?2?x?4},B?{x|x?m},且A?B?A,求实数m的取值范围。

XX且x?N}【例4】已知全集U?{x|x?10,,A?{2,4,5,8},B?{1,3,5,8},求

CU(A?B),CU(A?B),(CUA)?(CUB),(CUA)?(CUB),并比较它们的关系。

高中数学集合的教案设计与反思 篇7

这一课教学过程基本上实现了教学设计的意图,让学生体会到了"集合"这一基础数学思想在生活中实现运用,以及这一知识对解决我们生活的实际问题的重要性。学生在整个教学过程能积极参与到数学活动中来,积极运用所学的知识解决问题,体会到数学知识的有用价值,同时也激发了学生学习数学的兴趣和爱好。主要表现在以下几方面:

一、创设问题情境,激发探索创新的兴趣。

当学生解决两比赛一共有多少人时,答案有了争议,两种答案的学生都说出了自己的理由,学生的思维得到了碰撞,学生都想正确的答案是多少。而老师此时没有及时肯定哪个答案,而又创设了另一个问题情境,让学生设计图案来解决这个问题。从而使学生的思维得到了发展,提倡学生思维的开放性和创造性,鼓励学生根据自己的已有知识经验和独特体验,用自己的方法来发现创造。学生在一次次的肯定中,学习动机得到激励,进而产生更强的学习动机。

二、注重知识的形成过程,提供学生实践操作的机会。

现代教育理论主张"让学生动手去做科学,而不是用耳朵听科学。"因此教学要给学生留有足够的实践活动空间,教师是教学过程的组织者、引导者,使学生真正成为学习的主人。本节课创设了让学生设计图案,学生设计的图案很多。可见,创造源于实践,提供实践操作平台,激发学生学习数学的兴趣和热情的同时也培养学生的创新思维

三、注重解决问题方法的多样化,发展学生思维。

不同的学生有不同的思维方式以及不同的发展潜能。教学中关注学生的这些个性差异,应允许学生存在思维方式的多样化和思维水平的不同层次。本节课学生共用了5种方法来计算两个比赛一共有多少人?我也给学生足够的时间和空间,鼓励学生大胆地发表自己的观点和想法。新课改下的数学课不仅是让学生掌握固定的运算方法,也要发展学生的思维能力,让课堂焕发生命的活力。

本节课虽然完成了教学目标,也有不足之处:

1、强调过程与教学时间的矛盾依然存在。

《数学新课程标准》十分强调数学教学要注重过程,强调学生的动手操作,实践感知,强调学生的体验,这是新课改的方向。我在本课设计中,比较注重过程,注重学生的体验,注重培养学生学习数学的兴趣。教学过程中让学生设计图案并填写名单,汇报就有少数同学说没写好。要是等所有的同学都写好,本课教学任务就很难完成,还有展示学生作品时,许多学生都设计得很好,由于时间的关系,不能一一展示。应该说强调过程与教学时间的矛盾仍然存在,但如何处理好强调过程与教学时间之间的关系,需要进一步地探索和研究。

2、应该关注不同层次的学生。

教学活动中教师是引导者、组织者,应该让所有的学生都参与学习中。这样才能让不同的学生有不同的收获。我在本课利用直观集合图说各部分表示的意义时,找了少数的同学说了一下,就过渡到下一环节。但到了后面的列算式解答时,学生根据直观图写出了不同的算式,说算式的意义时有同学不会说了。部分学生还没理解直观图左侧和右侧的意义。教师应组织学生讨论、交流三个部分的意义,学生印象深刻了,全体学生有了思考的过程,这样后面就不会出现问题了。

高中数学集合的教案设计与反思 篇8

集合间的基本关系是在前面学习了集合的概念、表示方法及集合与元素的关系后来研究集合之间的一种关系,它为后面学好集合的运算起着非常重要的作用。

从事这一节教学时,我首先根据思考利用类比的思想引入集合之间有何关系,通过例子说明集合有包含相等等关系,引入本节课的内容。

讲解子集、相等、真子集、空集概念时,让学生认真读概念,理解概念中的关键字。通过反例深刻理解概念中关键字并记住。同时,对概念的三种语言进行点明,概念用文字语言,符号语言及图形语言有机结合,逐步使学生由文字语言向符号语言、图形语言过渡。

上课时我还注意将抽象概念与实例相结合,鼓励同学们积极发言,举例子来理解概念,尤其是空集的例子。学生大多举的是方程无解的例子。有的认为{0}是空集,组织学生讨论,让学生自己辩论后认为它不是空集,加深学生的理解。

最后,我与学生共同将子集、相等、真子集等的性质进行了总结,还通过一一列举得出例子的推广,n个元素组成的集合有个子集,个真子集,个非空子集等。

通过本节课教学,有以下想法:如果让我重上这节课,我是否可以写出本节课三大知识点?子集,相等,真子集让学生自学,通过例子、各小组讨论,讲解概念、关键字,得出各自的性质。同时我在课堂更大限度的还给学生,充分发挥学生的主动积极性。

本文来源:http://www.zjan56.com/jiaoxuesheji/70249.html