初三数学一元二次方程怎么解(推荐十一篇)。
作为一名教学工作者,总归要编写教案,教案是备课向课堂教学转化的关节点。那么写教案需要注意哪些问题呢?以下是小编为大家整理的《一元二次方程》的优秀教案(通用11篇),仅供参考,大家一起来看看吧。
初三数学一元二次方程怎么解 篇1
一、教学目标
1、知识与技能:
会根据增长率问题中的数量关系和等量关系,列出一元二次方程,并能对方程解的合理性作出解释。
2、过程与方法:
通过猜想、探讨构建一元二次方程模型。
3、情感、态度与价值观:
(1)通过自主、探究性学习,使学生养成良好的思维习惯。
(2)通过对方程解的合理性解释,培养学习实事求是的作风。
二、教学重点难点
1、重点:
找出问题中的数量关系;
2、难点:
找等量关系并列出相应方程、
三、教材分析
本节课是从实际问题引入的基本概念,学习方程的基本解法之后所提出的一些实际问题,以及最后一节的实践与探索,都是为了给与学生都创造一些探索交流的机会,让学生了解数学知识的发展,学会解决一些简单问题的方法,特别是从实际情景寻找所隐含的数量关系,建立适当的数学模型。
四、教学过程与互动设计
(一)温故知新
1、请同学们回忆并回答解一元一次方程应用题的一般步骤:
第一步:弄清题意和题目中的已知数、未知数,用字母表示题目中的一个未知数;
第二步:找出能够表示应用题全部含义的相等关系;
第三步:根据这些相等关系列出需要的代数式(简称关系式),从而列出方程;
第四步:解这个方程,求出未知数的值;
第五步:在检查求得的答数是否符合应用题的实际意义后,写出答案(包括单位名称。)
、解一元二次方程的应用题的步骤与解一元一次方程应用题的步骤一样。
我们先来解一些具体的题目,然后总结一些规律或应注意事项。
(二)创设情景,导入新课
1、一个长为10米的梯子斜靠在墙上,梯子的顶端距地面的垂直距离为8米。
若梯子的顶端下滑1米,那么
(1)猜一猜,底端也将滑动1米吗?
(2)列出底端滑动距离所满足的方程。
【答案】①底端将滑动1米多
②提示:先利用勾股定理在实际问题中的应用,说明数学来源于实际。
2、【探究活动】
某商店1月份的利润是2500元,3月份的利润达到3000元,这两个月的利润平均增长的百分率是多少(精确到0.1%)?
(1)学生讨论:怎样计算月利润增长百分率?
【点评】通过学生讨论得出月利润增长百分率=月增利润/月利润
例8某商品经过两次降价,每瓶零售价由56元降为31.5元,已知两次降价的百分率相同,求每次降价的百分率。
分析:若一次降价百分率为x,则一次降价后零售价为原来的(1-x)倍,即56(1-x);第二次降价的百分率仍为31.5x,则第二次降价后零售价为原来的'56(1-x)的(1-x)倍。
解:设平均降价百分率为x,根据题意,得
56(1-x)2=31.5
解这个方程,得
x1=1.75,x2=0.25
因为降价的百分率不可能大于1,所以x1=1.75不符合题意,符合题意要求的是x=0.25=25%
答每次降价百分率为25%、
【跟踪练习】
某药品经两次降价,零售价降为原来的一半、已知两次降价的百分率一样,求每次降价的百分率(精确到0.1%)、
【友情提示】我们要牢牢把握列方程解决实际问题的三个重要环节:①整体地,系统地审清问题;②把握问题中的等量关系;③正确求解方程并检验解的合理性。
(三)应用迁移,巩固提高
1、某商品原价200元,连续两次降价a%后售价为148元,下列所列方程正确的是()
(A)200(1+a%)2=148(B)200(1-a%)2=148
(C)200(1-2a%)=148(D)200(1-a2%)=148
2、为绿化家乡,某中学在2003年植树400棵,计划到2005年底,使这三年的植树总数达到1324棵,求此校植树平均增长的百分数?
(四)达标测试
1、某超市一月份的营业额为100万元,第一季度的营业额共800万元,如果平均每月增长率为x,则所列方程应为()
A、100(1+x)2=800B、100+100×2x=800C、100+100×3x=800D、100[1+(1+x)+(1+x)2]=800
2、某地开展植树造林活动,两年内植树面积由30万亩增加到42万亩,若设植树面积年平均增长率为,根据题意列方程,一元二次方程的解法
3、某农场的粮食产量在两年内从3000吨增加到3630吨,平均每年增产的百分率是多少?
4、某小组计划在一季度每月生产100台机器部件,二月份开始每月实际产量都超过前月的产量,结果一季度超产20%,求二,三月份平均每月增长率是多少?(精确到1%)
5、某钢铁厂今年一月份的某种钢产量是5000吨,此后每月比上个月产量提高的百分数相同,且三月份比二月份的产量多1200吨,求这个相同的百分数
五、课堂小结
初三数学一元二次方程怎么解 篇2
教学目标:
1、经历抽象一元二次方程概念的过程,进一步体会是刻画现实世界的有效数学模型
2、理解什么是一元二次方程及一元二次方程的一般形式。
3、能将一元二次方程转化为一般形式,正确识别二次项系数、一次项系数及常数项。
教学重点
1、一元二次方程及其它有关的概念。
2、利用实际问题建立一元二次方程的数学模型。
教学难点
1、建立一元二次方程实际问题的数学模型.
2、把一元二次方程化为一般形式
教学方法:指导自学,自主探究
课时:第一课时
教学过程:
(学生通过导学提纲,了解本节课自己应该掌握的内容)
一、自主探索:(学生通过自学,经历思考、讨论、分析的过程,最终形成一元二次方程及其有关概念)
1、请认真完成课本P39—40议一议以上的内容;化简上述三个方程.。
2、你发现上述三个方程有什么共同特点?
你能把这些特点用一个方程概括出来吗?
3、请同学看课本40页,理解记忆一元二次方程的概念及有关概念
你觉得理解这个概念要掌握哪几个要点?你还掌握了什么?
二、学以致用:(通过练习,加深学生对一元二次方程及其有关概念的理解与把握)
1、下列哪些是一元二次方程?哪些不是?
①②③
④x2+2x-3=1+x2 ⑤ax2+bx+c=0
2、判断下列方程是不是关于x的一元二次方程,如果是,写出它的二次项系数、一次项系数和常数项。
(1)3-6x2=0(2)3x(x+2)=4(x-1)+7(3)(2x+3)2=(x+1)(4x-1)
3、若关于x的方程(k-3)x2+2x-1=0是一元二次方程,则k的值是多少?
4、关于x的方程(k2-1)x2+2(k+1)x+2k+2=0,在什么条件下它是一元二次方程?在什么条件下它是一元一次方程?
5、以-2、3、0三个数作为一个一元二次方程的系数和常数项,请你写出满足条件的不同的一元二次方程?
三、反思:(学生,进一步加深本节课所学内容)
这节课你学到了什么?
四、自查自省:(通过当堂小测,及时发现问题,及时应对)
1、下列方程中是一元二次方程的有()A、1个B、2个 C、3个D、4个
(1)(2)(3)(4)(5)(6)2、将方程-5x2+1=6x化为一般形式为____________________.其二次项是_________,系数为_______,一次项系数为______,常数项为______。
3、关于x的方程(m2-4)x2+(m+2)x+2m+3=0,当m__________时,是一元二次方程;当m__________时,是一元一次方程.
作业:必做题:习题7.1
选做题:(挑战自我)p41随堂练习
1、已知关于的方程是一元二次方程,则为何值?
2、.当m为何值时,方程(m+1)x+1+27mx+5=0是关x于的一元二次方程?
3、关于的一元二次方程(m-1)x2+x+m2-1=0有一根为,则的值多少?
4、某校为了美化校园,准备在一块长32米,宽20米的长方形场地上修筑若干条道路,余下部分作草坪,并请全校同学参与设计,现在有两位学生各设计了一种(如图),根据两种设计各列出方程,求图中道路的宽分别是多少,使图(1),(2)的草坪面积为540米2.?
(1)(2)
板书设计:一元二次方程
定义:一个未知数整式方程可以化为
一般形式ax2+bx+c=0(a、b、c为常数,a≠0)
二次项一次项常数项
系数为a系数为b
教学反思
这次我参加了区里组织的优质
课比赛,这次的优质课采用市里要求的1/3模式,这对于我们来说具有一定的挑战性。所谓“1/3模式”,就是把课堂教学时间大致分为3个部分,1/3的时间个人自主学习,1/3的时间小组合作学习,1/3的时间全班交流讨论。在1/3模式中,整个教学过程由教师和学生共同参与,每个环节1/3的时间只是大致的划分,可根据学习内容灵活安排。这就对教师提出了较高的要求。
首先要准备好学案。学案就是学生学习的依据。在学案里,教师要提出明确的学习要求。学习要求可包括以下方面:完成学习任务的时间、学习内容的范围、完成学习任务所要达到的程度、自主学习成果展现的形式等。这就要求教师要提前考虑周全,对于学生学习的要求要一次性提出,内容上有梯度。学生自主学习时,教师要深入学生当中,观察学生的学习状况,检查学习任务完成的情况,有针对性的指导和帮助教师对自主学习方法和途径的指导要适度,既要满足学生完成学习任务的需要,又不能挤占学生自主探究的空间
其次,学习氛围是合作学习成功的关键之一,教师要营造安全的心理环境、充裕的时空环境、热情的帮助环境、真诚的激励环境,只就要求教师在语言上也要有较高水平,会发动学生,会调动学生的积极性,让课堂气氛活跃起来,让学生充分发挥自己的水平。
再是,由于课堂上主要是以学生为主。这就要求教师尽量少讲,要充当好组织者、引导者、倾听者的角色,不要急于发表自己的观点,只要学生能讲的教师就不要讲,要避免因为教师呈现自己的观点而打破学生的讨论。学生说完的东西,如果没有问题,教师就不要重复。教师对学习内容要点的讲解要有的放矢,能起到画龙点睛的作用。要在学生原有的水平上进行提升,有助于学生加深对知识的理解。
我们只有在教学中不断的学习,不断的改进自己,才能保证我们的课堂很精彩,是名副其实的优质课。
初三数学一元二次方程怎么解 篇3
一元二次方程是整个初中阶段所有方程的核心。它与二次函数有密切的联系,在以后将应用于解分式方程、无理方程及有关应用性问题中。一元二次方程的解法——因式分解法,是建立在一元二次方程解法及因式分解的基础上,因此我采取让学生带着问题自学课本,寻找因式分解法解一元二次方程的形式特征,即等号右边必须为零,左边必须为两个一次因式的乘积(不能是加减运算),利用零的特性,将求一元二次方程的解,通过因式分解法,转化为求两个一元一次方程的解,将未知领域转化为已知领域,渗透了化归数学思想,让班上中等偏下学生先上黑板解题,将暴露出来的问题,在全班及时纠正。本节课较好地完成了教学目标,同时还培养了学生看书自学的能力,取得较好的教学效果。
老师提示:
1.用分解因式法的条件是:方程左边易于分解,而右边等于零;
2.关键是熟练掌握因式分解的知识;
3.理论依旧是“如果两个因式的积等于零,那么至少有一个因式等于零。
初三数学一元二次方程怎么解 篇4
教材分析
一元二次方程是中学数学的一个重要内容之一,在初中数学中占有重要地位。从知识的发展来看,一元二次方程的学习,是一元一次方程、方程组及不等式知识的延续和深化,也是今后学生学习可化为一元二次方程的方程、一元二次不等式、二次函数等知识的基础。从知识的横向来看,一元二次方程的学习对其它学科也有重要的意义,比如物理中的变速运动等问题就要通过解一元二次方程来解决。这节课是一元二次方程的概念课,通过丰富的实例,抽象出一元二次方程的概念。本节课的教学不仅使学生进一步体会方程是刻画现实世界中数量关系的一个有效的数学模型,而且提高了学生分析、比较、抽象和概括的.能力。为接下来的学习起到很好的铺垫作用
学情分析
九年级的学生,在讲本节课之前,已经系统的学习了一元一次方程及相关概念,学习了整式、分式和二次根式,从知识结构上看他们已经具备了继续探究一元二次方程的基础。这个阶段的学生自主探究和合作交流的能力很强,并且他们比较、分析、抽象和概括的能力也有很大提高。由于他们有强烈的求知欲,当遇到新的问题时,会自然的产生进一步探究的欲望。而我所教(11)班是年级中一个普通班,学生数学底子薄,基础差,学生由于学习困难,基础差,没有自信,也就对数学的学习兴趣越来越弱,有人甚至要放弃对数学的学习,作为他们的老师,首先培养他们自信心,启发他们对数学的喜爱,慢慢培养他们的自信心,使数学基本概念、基本运算方法悄然走进学生的生活、走进他们对知识的运用中去。
教学目标
一、知识与技能:
1.理解并掌握一元二次方程的概念,知道一元二次方程的一般形式;
2.会把一个一元二次方程化为一般形式,会正确地判断一元二次方程的项与系数;
3.通过本节课的学习,培养学生观察、比较、分析、探究和归纳的能力。
二、过程与方法
1. 在回顾一元一次方程的概念的基础上,让学生通过分析实际问题中的数量关系列出方程,从而引导他们发现问题,然后通过自主探究和合作交流,抽象出一元二次方程的概念;
2. 借助于多媒体从实际问题抽象出概念,在通过巩固训练、回顾梳理、拓展提高到作业布置,完成本节课的教学
三、情感态度与价值观
1. 通过本节课的学习使学生认识到数学来源于生活实践,又反过来作用于生活的辩证唯物主义观点,激发学生学数学、用数学的意识;
2. 通过本节知识的学习,使学生认识到知识的产生、变化和发展的过程。
教学重点和难点
重点:一元二次方程的概念及一般形式。
难点:1.由实际问题向数学问题的转化过程。2.正确识别一般式中的“项”及“系数”。
初三数学一元二次方程怎么解 篇5
一、教材分析
(一)教材的地位和作用
“一元二次方程的解法”是初中代数的方程中的一个重要内容之一,是在学完一元一次方程、因式分解、数的开方、以及前三种因式分解法、直接开方法、配方法解一元二次方程的基础上,掌握用求根公式解一元二次方程,是配方法和开平方两个知识的综合运用和升华。通过本节课的教学使学生明确配方法是解方程的通法,同时会根据题目选择合适的方法解一元二次方程。一元二次方程的解法也是今后学习二次函数和一元二次不等式的基础。
(二)教学目标
知识技能方面:理解一元二次方程求根公式的推导过程,会用公式法解一元二次方程。
数学思考方面:通过求根公式的推导过程进一步使学生熟练掌握配方法,培养学生数学推理的严密性和逻辑性以及由特殊到一般的数学思想。
解决问题方面:结合用公式法解一元二次方程的练习,培养学生快速准确的运算能力和运用公式解决实际问题的能力。
情感态度方面:让学生体验到所有的方程都可以用公式法解决,感受到公式的对称美、简洁美,渗透分类的思想;公式的引入培养学生寻求简便方法的探索精神和创新意识。
(三)教学重、难点
重点:掌握用公式法解一元二次方程的一般步骤;会熟练用公式法解一元二次方程。
难点:理解求根公式的推导过程和判别式
二、教学法分析
教法:本节课采用引导发现式的自主探究式与交流讨论结合的方法;在教学中由旧知识引导探究一般化问题的形式展开,利用学生已有的知识、多交流、主动参与到教学活动中来。
学法:让学生学会善于观察、分析讨论和分类归纳的方法,提出问题后,鼓励学生通过分析、探索、尝试解决问题的方法,铜锁亲自尝试,使学生的思维能力得到培养。
三、过程分析
本节课的教学设计成以下六个环节:复习导入——呈现问题——例题讲解——巩固练习课时小结——布置作业。
1、复习引入:
这节课,我首先从旧知
问题(1)用配方法解方程2x28x90的练习引入,
问题(2)总结配方法的一般步骤(化一般方程——二次项系数为1——配方使左边为完全平方式——两边开方——求解)。
设计意图:让学生巩固昨天的知识,进一步熟练钥匙并为今天做学的内容解一般形式的一元二次方程做好铺垫,达到“温故而知新”。
2、问题呈现:
你能用配方法解一般形式的一元二次方程吗?
此处由一个特殊的旧知引导学生推导出一般的结果,希望学生学会由特殊性到一般化的思想。为降低b2b24ac推导的难度,化简、移项、配方、变形由我和学生一起探究完成,到(x这步时,提出)
问题:①此时可以直接开平方吗?
②等号右边的值需要满足什么条件?为什么?
③等号右边的值只跟哪个式子有关?
设计意图:师生共同完成前四步,这样与利于减轻学生的思维负担,便于将主要精力放在后边公式的推导上。通过小组的讨论有利于发挥学生的'互帮互助,借助小组的交流完善答案,关键让学生会对掌握b24ac与方程有无实数根的关系,这里分类思想也是今后常用的一种数学思想,b24ac进行讨论,
应加以强化。
最终总结出:
当b24ac<0时,原方程无实数解。
当b24ac≥0时,原方程有实数解,
再进一步谈论:b24ac=0与b24ac>0时,两个解区别?
(b24ac=0时,两个相等的实数解,b24ac>0时,两个不等的实数解)
由此可知,方程有解还是无解是由b24ac决定,即b24ac是方程解的判别式。
同时,方程的解是可以将a、b、c
的值带入公式x根公式”,利用它解一元二次方程叫做公式法。
3、例题讲解
例4:用公式法解下列方程
总结步骤:
1、把方程公成一般形式,并写出a,b,c的值。
2、求出b24ac的值
4、写出方程的解:x1=,x2=
设计意图:规范解题格式,让学生体会数学课中的严谨的逻辑推理;体验并掌握公式法解一元二次方程的步骤,从中让学生领会到由特殊到一般,一般到特殊的辩证思想。
4、巩固练习
解下列一元二次方程:①x2x60
②4x2x90
③x2100
设计意图:
(1)熟悉公式法,强化解题格式,
(2)及时发现错误及时解决。
例5:解方程:x(x1)(x2)
化简得12212x3x402
强调:
①当方程不是一般形式时,应先化成一般形式,再运用求根公式。
②你还能用其他方法解本例方程吗?
设计意图:明确一元二次方程解题方法的多样性,让学生在你观察分析题目后灵活合理的选择解题方法,培养学生的多样化思维,提高解题能力和解题的速度。
5、课时小结
(1)学生作知识总结:本节课通过配方法求解一般形式的一元二次方程的根,推出了一元二次方程的求根公式,并按照公式法的步骤解一元二次方程。
(2)我扩展:(方法归纳)求根公式是一元二次方程的专用公式,只有在确定方程是一元二次方程时才能使用,是常用而重要的一元二次方程的万能求根公式。
6、布置作业:面向全体学生,注重个体差异,加强作业的针对性,分层布置作业,适应新课标,让不同的学生各其所长,因材施教的要求,提高他们的学习的兴趣和自信心。
四、板书设计
本节课内容较为单一,通过“层层设疑”、“复习回顾”等环节促进学生的思考和探究。
通过比较合理的问题设计巩固练习、小组讨论等形式给学生提供了充分的展示机会,强化了学生的运算能力,有利于学生掌握基本技能。
初三数学一元二次方程怎么解 篇6
【教学目标】
(1)理解一元二次方程的概念
(2)掌握一元二次方程的一般形式,会判断一元二次方程的二次项系数、一次项系数和常数项。
(2)会用因式分解法解一元二次方程
【教学重点】
一元二次方程的概念、一元二次方程的一般形式
【教学难点】
因式分解法解一元二次方程
【教学过程】
(一)创设情景,引入新课
实际例子引入:列出的方程分别为X-7x+8=0,(X-7)(X+1)=89,X+8X-9=0
由学生说出这几个方程的共同特征,从而引出一元二次方程的概念。
(二)新授
1:一元二次方程的概念。(一个未知数、最高次2次、等式两边都是整式)
2:一元二次方程的一般形式(形如aX+bX+c=0)
任一个一元二次方程都可以转化成一般形式,注意二次项系数不为零
3:讲解例子
4:利用因式分解法解一元二次方程
5:讲解例子
6:一般步骤
(三)小结
(四)布置作业
初三数学一元二次方程怎么解 篇7
教学目标
(一)教学知识点
1.经历探索二次函数与一元二次方程的关系的过程,体会方程与函数之间的联系。
2.理解二次函数与x轴交点的个数与一元二次方程的根的个数之间的关系,理解何时方程有两个不等的实根、两个相等的实数和没有实根。
3.理解一元二次方程的根就是二次函数与y=h(h是实数)交点的横坐标。
(二)能力训练要求
1.经历探索二次函数与一元二次方程的关系的过程,培养学生的探索能力和创新精神。
2.通过观察二次函数图象与x轴的交点个数,讨论一元二次方程的根的情况,进一步培养学生的数形结合思想。
3.通过学生共同观察和讨论,培养大家的.合作交流意识。
(三)情感与价值观要求
1.经历探索二次函数与一元二次方程的关系的过程,体验数学活动充满着探索与创造,感受数学的严谨性以及数学结论的确定性。
2.具有初步的创新精神和实践能力。
教学重点
1.体会方程与函数之间的联系。
2.理解何时方程有两个不等的实根,两个相等的实数和没有实根。
3.理解一元二次方程的根就是二次函数与y=h(h是实数)交点的横坐标。
教学难点
1.探索方程与函数之间的联系的过程。
2.理解二次函数与x轴交点的个数与一元二次方程的根的个数之间的关系。
教学方法
讨论探索法。
教具准备
投影片二张
第一张:(记作§2.8.1A)
第二张:(记作§2.8.1B)
教学过程
Ⅰ.创设问题情境,引入新课
[师]我们学习了一元一次方程kx+b=0(k≠0)和一次函数y=kx+b(k≠0)后,讨论了它们之间的关系.当一次函数中的函数值y=0时,一次函数y=kx+b就转化成了一元一次方程kx+b=0,且一次函数y=kx+b(k≠0)的图象与x轴交点的横坐标即为一元一次方程kx+b=0的解。
现在我们学习了一元二次方程ax2+bx+c=0(a≠0)和二次函数y=ax2+bx+c(a≠0),它们之间是否也存在一定的关系呢?本节课我们将探索有关问题。
Ⅱ.讲授新课
一、例题讲解
投影片:(§2.8.1A)
我们已经知道,竖直上抛物体的高度h(m)与运动时间t(s)的关系可以用公式h=-5t2+v0t+h0表示,其中h0(m)是抛出时的高度,v0(m/s)是抛出时的速度.一个小球从地面被以40m/s的速度竖直向上抛起,小球的高度h(m)与运动时间t(s)的关系如下图所示,那么
(1)h与t的关系式是什么?
(2)小球经过多少秒后落地?你有几种求解方法?与同伴进行交流。
[师]请大家先发表自己的看法,然后再解答.
[生](1)h与t的关系式为h=-5t2+v0t+h0,其中的v0为40m/s,小球从地面被抛起,所以h0=0.把v0,h0代入上式即可求出h与t的关系式。
(2)小球落地时h为0,所以只要令h=-5t2+v0t+h.中的h为0,求出t即可。
还可以观察图象得到.
[师]很好.能写出步骤吗?
[生]解:(1)∵h=-5t2+v0t+h0,
当v0=40,h0=0时,
h=-5t2+40t.
(2)从图象上看可知t=8时,小球落地或者令h=0,得:
-5t2+40t=0,
即t2-8t=0。
∴t(t-8)=0。
∴t=0或t=8。
t=0时是小球没抛时的时间,t=8是小球落地时的时间。
二、议一议
投影片:(§2.8.1B)
二次函数①y=x2+2x,
②y=x2-2x+1,
③y=x2-2x+2的图象如下图所示。
(1)每个图象与x轴有几个交点?
(2)一元二次方程x2+2x=0,x2-2x+1=0有几个根?解方程验证一下:一元二次方程x2-2x+2=0有根吗?
(3)二次函数y=ax2+bx+c的图象和x轴交点的坐标与一元二次方程ax2+bx+c=0的根有什么关系?
[师]还请大家先讨论后解答。
[生](1)二次函数y=x2+2x,y=x2-2x+1,y=x2-2x+2的图象与x轴分别有两个交点,一个交点,没有交点。
(2)一元二次方程x2+2x=0有两个根0,-2;方程x2-2x+1=0有两个相等的根1或一个根1;方程x2-2x+2=0没有实数根。
(3)从观察图象和讨论中可知,二次函数y=x2+2x的图象与x轴有两个交点,交点的坐标分别为(0,0),(-2,0),方程x2+2x=0有两个根0,-2;
二次函数y=x2-2x+1的图象与x轴有一个交点,交点坐标为(1,0),方程x2-2x+1=0有两个相等的实数根(或一个根)1;二次函数y=x2-2x+2的图象与x轴没有交点,方程x2-2x+2=0没有实数根。
由此可知,二次函数y=ax2+bx+c的图象和x轴交点的横坐标即为一元二次方程ax2+bx+c=0的根。
[师]大家总结得非常棒。
二次函数y=ax2+bx+c的图象与x轴的交点有三种情况:有两个交点、有一个交点、没有交点.当二次函数y=ax2+bx+c的图象与x轴有交点时,交点的横坐标就是当y=0时自变量x的值,即一元二次方程ax2+bx+c=0的根。
三、想一想
在本节一开始的小球上抛问题中,何时小球离地面的高度是60m?你是如何知道的?
[师]请大家讨论解决。
[生]在式子h=-5t2+v0t+h0中,当h0=0,v0=40m/s,h=60m时,有
-5t2+40t=60,
t2-8t+12=0,
∴t=2或t=6.
因此当小球离开地面2秒和6秒时,高度都是60m。
Ⅲ.课堂练习
随堂练习(P67)
Ⅳ.课时小结
本节课学了如下内容:
1.经历了探索二次函数与一元二次方程的关系的过程,体会了方程与函数之间的联系。
2.理解了二次函数与x轴交点的个数与一元二次方程的根的个数之间的关系,理解了何时方程有两个不等的实根.两个相等的实根和没有实根。
Ⅴ.课后作业
习题2.9
板书设计
§2.8.1 二次函数与一元二次方程(一)
一、1.例题讲解(投影片§2.8.1A)
2.议一议(投影片§2.8.1B)
3.想一想
二、课堂练习
随堂练习
三、课时小结
四、课后作业
备课资料
思考、探索、交流
把4根长度均为100m的铁丝分别围成正方形、长方形、正三角形和圆,哪个的面积最大?为什么?
解:(1)设长方形的一边长为x m,另一边长为(50-x)m,则
S长方形=x(50-x)=-x2+50x=-(x2-50x+625)+625=-(x-25)2+625。
即当x=25时,S最大=625。
(2)S正方形=252=625。
(3)∵正三角形的边长为 m,高为 m,
∴S三角形= =≈481(m2).
(4)∵2πr=100,∴r= 。
∴S圆=πr2=π·( )2=π· = ≈796(m2).
所以圆的面积最大。
初三数学一元二次方程怎么解 篇8
一、教学目标
知识与技能
(1)理解一元二次方程的意义。
(2)能熟练地把一元二次方程整理成一般形式并能指出它的二次项系数,一次项系数及常数项。
过程与方法
在分析、揭示实际问题的数量关系并把实际问题转化成数学模型(一元二次方程)的过程中,使学生感受方程是刻画现实世界数量关系的工具,增加对一元二次方程的感性认识。
情感、态度与价值观
通过探索建立一元二次方程模型的过程,使学生积极参与数学学习活动,增进对方程的认识,发展分析问题、解决问题的能力。
二、教材分析:
教学重点难点
重点:经历建立一元二次方程模型的过程,掌握一元二次方程的一般形式。
难点:准确理解一元二次方程的意义。
三、教学方法
创设情境——主体探究——合作交流——应用提高
四、学案
(1)预学检测
3x-5=0是什么方程?一元一次方程的定义是怎样的?其一般形式是怎样的?
五、教学过程
(一)创设情境、导入新
(1)自学本P2—P3并完成书本
(2)请学生分别回答书本内容再
(二)主体探究、合作交流
(1)观察下列方程:
(35-2x)2=900 4x2-9=0 3y2-5y=7
它们有什么共同点?它们分别含有几个未知数?它们的左边分别是未知数的几次几项式?
(2)一元二次方程的概念与一般形式?
如果一个方程通过移项可以使右边为0,而左边是只含一个未知数的二次多项式,那么这样的方程叫作一元二次方程,它的一般形式是ax2+bx+c=0(a、b、c是已知数 a≠0),其中,a、b、c分别称为二次项系数、一次项系数和常数项,如x2-x=56
(三)应用迁移、巩固提高
例1:根据一元二次方程定义,判断下列方程是否为一元二次方程?为什么?
x2-x=1 3x(x-1)=5(x+2) x2=(x-1)2
例2:将方程3x(x-1)=5(x+2)化成一元二次方程的一般形式,并写出其中的二次项系数、一次项系数和常数项。
解:去括号得
3x2-3x=5x+10
移项,合并同类项,得一元二次方程的一般形式
3x2-8x-10=0
其中二次项系数为3,一次项系数为-8,常数项为-10.
学生练习:书本P4练习
(四)总结反思 拓展升华
总结
1.一元二次方程的定义是怎样的?
2.一元二次方程的一般形式为ax2+bx+c=0(a≠0),一元二次方程的项及系数都是根据一般式定义的,这与多项式中的项、次数及其系数的定义是一致的。
3.在实际问题转化为一元二次方程数学模型的过程中,体会学习一元二次方程的必要性和重要性。
反思
方程ax3+bx2+cx+d=0是关于x的一元二次方程的条是a=0且b≠0,是一元一次方程的条是a=b=0 且c≠0.
(五)布置作业
(1)必做题P4 习题1.1A组 1.2
(2)选做题: 若xm-2=9是关于x的一元二次方程,试求代数式(m2-5m+6)÷(m2-2m)的值。
初三数学一元二次方程怎么解 篇9
学习目标
1、一元二次方程的求根公式的推导。
2、会用求根公式解一元二次方程。
3、通过运用公式法解一元二次方程的训练,提高学生的运算能力,养成良好的运算习惯。
学习重、难点
重点:一元二次方程的求根公式。
难点:求根公式的条件:b2-4ac≥0。
学习过程:
一、自学质疑:
1、用配方法解方程:2x2-7x+3=0。
2、用配方解一元二次方程的步骤是什么?
3、用配方法解一元二次方程,计算比较麻烦,能否研究出一种更好的方法,迅速求得一元二次方程的实数根呢?
二、交流展示:
刚才我们已经利用配方法求解了一元二次方程,那你能否利用配方法的基本步骤解方程ax2+bx+c=0(a≠0)呢?
三、互动探究:
一般地,对于一元二次方程ax2+bx+c=0
(a≠0),当b2-4ac≥0时,它的根是:
用求根公式解一元二次方程的方法称为公式法。
由此我们可以看到:一元二次方程ax2+bx+c=0(a≠0)的根是由方程的系数a、b、c确定的'。因此,在解一元二次方程时,先将方程化为一般形式,然后在b2-4ac≥0的前提条件下,把各项系数a、b、c的值代入,就可以求得方程的根。
注:(1)把方程化为一般形式后,在确定a、b、c时,需注意符号。
(2)在运用求根公式求解时,应先计算b2-4ac的值;当b2-4ac≥0时,可以用公式求出两个不相等的实数解;当b2-4ac
四、精讲点拨:
例1、课本例题
总结:其一般步骤是:
(1)把方程化为一般形式,进而确定a、b,c的值。(注意符号)
(2)求出b2-4ac的值。(先判别方程是否有根)
(3)在b2-4ac≥0的前提下,把a、b、c的直代入求根公式,求出的值,最后写出方程的根。
例2、解方程:
(1)2x2-7x+3=0(2)x2-7x-1=0
(3)2x2-9x+8=0(4)9x2+6x+1=0
五、纠正反馈:
做书上第P90练习。
六、迁移应用:
例3、一个直角三角形三边的长为三个连续偶数,求这个三角形的三条边长。
例4、求方程的两根之和以及两根之积。
拓展应用:关于的一元二次方程的一个根是,则;
方程的另一根是
初三数学一元二次方程怎么解 篇10
教学目标
知识技能:掌握应用方程解决实际问题的方法步骤,提高分析问题、解决问题的能力。
过程与方法:通过探索球积分表中数量关系的过程,进一步体会方程是解决实际问题的数学模型,并且明确用方程解决实际问题时,不仅要注意解方程的过程是否正确,还要检验方程的解是否符合问题的实际意义。
情感态度:鼓励学生自主探究,合作交流,养成自觉反思的良好习惯。
重点:把实际问题转化为数学问题,不仅会列方程求出问题的解,还会进行推理判断。
难点:把数学问题转化为数学问题。
关键:从积分表中找出等量关系。
教具:投影仪。
教法:探究、讨论、启发式教学。
教学过程
一、创设问题情境
用投影仪展示几张比赛场面及比分(学习是生活需要,引起学生兴趣)
二、引入课题
教师用投影仪展示课本106页中篮球联赛积分榜引导学生观察,思考:
①用式子表示总积分能与胜、负场数之间的数量关系;
②某队的胜场总分能等于它的负场总积分么?
学生充分思考、合作交流,然后教师引导学生分析。
师:要解决问题①必须求出胜一场积几分,负一场积几分,你能从积分榜中得到负一场积几分么?你选择哪一行最能说明负一场积几分?
生:从最下面一行可以发现,负一场积1分。
师:胜一场呢?
生:2分(有的.用算术法、有的用方程各抒己见)
师:若一个队胜a场,负多少场,又怎样积分?
生:负(14-a)场,胜场积分2a,负场积分14-a,总积分a+14.
师:问题②如何解决?
学生通过计算各队胜、负总分得出结论:不等。
师:你能用方程说明上述结论么?
生:老师,没有等量关系。
师:欸,就是,已知里没说,是不是不能用方程解决了?谁又没有大胆设想?
生:老师,能不能试着让它们相等?
师:伟大的发明都是在尝试中进行的,试试?
生:如果设一个队胜了x场,则负(14-x)场,让胜场总积分等负场总积分,方程为:2x=14-x解得x=4/3(学生掌声鼓励)
师:x表示什么?可以是分数么?由此你的出什么结论?
生:x表示胜得场数,应该是一个整数,所以,x=4/3不符合实际意义,因此没有哪个队的胜场总积分等于负场总积分。
师:此问题说明,利用方程不仅求出具体数值,而且还可以推理判断,是否存在某种数量关系;还说明用方程解决实际问题时,不仅要注意方程解得是否正确,还要检验方程的解是否符合问题的实际意义。
拓展
如果删去积分榜的最后一行,你还能用式子表示总积分与胜、负场数之间的数量关系吗?
师:我们可以从积分榜中积分不相同的两行数据求的胜负一场各得几分,如:一、三行。
教师引导学生设未知数,列方程。学生试说。
生:设胜一场积x分,则前进队胜场积分10x,负场积分(24-10x)分,它负了4场,所以负一场积分为(24-10x)/4,同理从第三行得到负一场积分为(23-9x)/5,从而列方程为(24-10x)/4=(23-9x)/5。解得x=2,当x=2时,(24-10x)/4=1。仍然可得负一场积1分,胜一场积2分。
三、巩固练习
已知某山区的平均气温与该山的海拔高度的关系见表:
海拔高度(单位:m)
100
200
300
400
平均气温(单位:℃)
22
21.5
21
20.5
20
若某种植物适宜生长在18℃20℃(包括18℃20℃)的山区,请问该植物适宜种在海拔为多少米的山区?
学生分析题意,思考,在练习本上完成,然后同桌小议,代表发言,教师点拨。
四、课堂小结:
让几个学生谈自己的收获,再让一个学生全面总结。
五、布置作业:
课本108页8、9题。
六、教学反思
本节课主要是借球赛积分表问题传授数学知识的应用。在前面已经讨论过由实际问题抽象出一元一次方程模型和解一元一次方程的基础上,本节进一步以探究的形式讨论如何用一元一次方程解决实际问题。要探究的问题比前几节的问题复杂些,问题情境与实际情况更接近。本节的重点是建立实际问题的方程模型。通过探究活动,进一步体验一元一次方程与实际的密切联系,加强数学建模思想,培养运用一元一次方程分析和解决问题的能力。
由于本节问题的背景和表达都比较贴近实际,其中的有些数量关系比较隐蔽,所以在探究过程中正确建立方程是难点,教师要恰当的引导,让学生弄清问题背景,分析清楚有关数量关系,找出可作为方程依据的主要相等关系,但教师不要代替学生的思考。
初三数学一元二次方程怎么解 篇11
一、一元二次方程的解法之间的比较:
1.直接开平方法应用简单,但受形式限制;开平方的时候要注意正负。
2.配方法较麻烦,用公式法更方便,故一般不采用。但配方法是一种较重要的数学方法,公式法就是由它推导出来的,而且在后面的函数中还要用到配方法,所以要掌握好。它的重要性,不仅仅表现在一元二次方程的解法中,在今后学习二次函数,到高中学习二次曲线时还将经常用到。配方的时候,要注意二次项系数应先化为1,再把常数项移到式子的右边,然后把方程两边都加上一次项系数一半的平方;左边就变成了一个平方的形式,再运用直接开平方的`方法求出方程的解。
3.公式法是一元二次方程的基本解法,对所有的一元二次方程都适用;用公式法的时候要先把方程变为一般形式,在求出方程的判别式,最后用公式求出方程的解。
4.因式分解法使用方便,是解一元二次方程最常用的方法,但不是所有的二次三项式都能很方便地进行因式分解。应用时要注意,等号的右边一定要为0,然后再把方程的左边进行因式分解,将方程左边分解成两个一次因式的乘积的形式,令每个因式分别为零,得到两个一元一次方程,解每个方程就求出了原方程的解。
二、一元二次方程的解法选用:
1.先观察能否用直接开平方法,能用就优先采用;
2.再观察能否用因式分解法;
3.用公式法。
注意:一般不采用配方法。